Publications

原著論文 / Original Articles

  1. under preparation
    S. Shoji*

  2. Biomimetic light-harvesting antennas via self-assembly of chemically programmed chlorophylls
    S. Matsubara*, S. Shoji, H. Tamiaki
    Chem. Commun.60, 12513–12524 (2022).
    DOI: 10.1039/D4CC04363D

  3. Structural and electrochemical properties of mononuclear copper(II) complexes with pentadentate ethylenediamine-based ligands with pyridine/quinoline/isoquinoline/quinoxaline binding sites
    Y. Mikata*, M. Akedo, E. Hamamoto, S. Yoshida, S. Shoji, Y. Ohsedo, T. Storr, Y. Funahashi, T. Matsuo
    Dalton Trans.53, 16716–16732 (2024).
    DOI: 10.1039/D4DT02363C

  4. Luminescence changeable CO2-storage cylinder: Triple-stranded helical Eu(III)/Tb(III) fluorinated MOFs with amide linkers
    J. Hayashi, S. Iwamura, Y. Nakasaka, M. Wang, S. Shoji, Y. Kitagawa, K. Fushimi, S. Mukai, Y. Hasegawa*
    Chem. Eur. J.30, e202403224 (2024).
    DOI: 10.1002/chem.202403224

  5. Composition Analysis of Corrosion Products on Steel by Machine Learning of Optical Microscopic Images
    Y. Tsuji, K. Hirasawa, S. Shoji, Y. Kitagawa, Y. Hasegawa, K. Fushimi*
    Tetsu-to-Hagane, in press (2024).
    DOI: 10.2355/tetsutohagane.TETSU-2024-056

  6. Alkyl substituents control the Cd2+-selectivity of fluorescence enhancement in N,N’-bis(2-quinolylmethyl)ethylenediamine derivatives
    Y. Mikata,* S. Yasuda, T. Hagiwara, H. Konno, S. Shoji
    Inorg. Chim. Acta571, 122218 (2024).
    DOI: 10.1016/j.ica.2024.122218

  7. Guest-responsive near-infrared luminescent metal-organic-cage organized by porphyrin dyes and Yb(III) complexes
    S. Hosoya, S. Shoji*, T. Nakanishi, M. Kobayashi, M. Wang, K. Fushimi, T. Taketsugu, Y. Kitagawa, Y. Hasegawa*
    Inorg. Chem.63, 10108–10113 (2024).
    DOI: 10.1021/acs.inorgchem.4c01348


  8. Cd2+-Specific fluorescence response of methoxy-substituted N,N-bis(2-quinolylmethyl)-2-methoxyaniline derivatives
    Y. Mikata*, N. Tosaka, S. Yasuda, Y. Sakurai, S. Shoji, H. Konno, T. Matsuo
    Inorg. Chem.63, 8026–8037 (2024).
    DOI: 10.1021/acs.inorgchem.3c04395

  9. Cd2+-Selective fluorescence enhancement of N,N’-bis(2-quinolylmethyl)-N,N’-dimethyl-1,2-phenylenediamine derivatives
    Y. Mikata*, K. Kawakami, M. Nagaoka, S. Shoji, H. Konno, T. Matsuo
    Inorg. Chim. Acta565, 121968 (2024).
    DOI: 10.1016/j.ica.2024.121968

  10. Passive film formed on Si-Mn steel in boric acid-borate buffer at 6.5
    K. Fushimi*, K. Higa, A. Fujimura, S. Shoji, Y. Kitagawa, Y. Hasegawa, H. Katayama
    J. Electrochem. Soc.171, 021502 (2024).
    DOI: 10.1149/1945-7111/ad27b7

  11. Structure-changeable luminescent Eu(III) complex as a human cancer grade probing system for brain tumor diagnosis
    M. Wang*, M. Kono, Y. Yamaguchi, J. Islam, S. Shoji, Y. Kitagawa, K. Fushimi, G. Matsuba, A. Yamamoto, M. Tanaka, M. Tsuda, S. Tanaka, Y. Hasegawa*
    Sci. Rep.14, 778 (2024).
    DOI: 10.1038/s41598-023-50138-9

  12. Cd2+-Selective fluorescence enhancement of bisquinoline derivatives with 2-aminoethanol skeleton
    Y. Mikata*, A. Tsuruta, H. Koike, S. Shoji, H. Konno
    Molecules29, 369 (2024).
    DOI: 10.3390/molecules29020369

  13. Quantitative evaluation of hydrogen absorption by detecting non-absorbed hydrogen in electrochemical permeation test
    Y. Mizushiri, S. Shoji, Y. Kitagawa, Y. Hasegawa, K. Fushimi*
    Int. J. Hydrogen Energy67, 1243–1247 (2024).
    DOI: 10.1016/j.ijhydene.2023.10.236

  14. Size-control synthesis and luminescence properties of the Eu(III) coordination particles
    M. Enokido, K. Sasaki, S. Shoji, M. Wang, K. Fushimi, Y. Kitagawa, Y. Hasegawa*
    J. Phys. Chem. C127, 23785–23791 (2023).
    DOI: 10.1021/acs.jpcc.3c06499

  15. Evaluation of oxygen-containing pentadentate ligands with pyridine/quinoline/isoquinoline binding sites via the structural and electrochemical properties of mononuclear copper(II) complexes
    Y. Mikata*, M. Uchida, H. Koike, S. Shoji, Y. Ohsedo, Y. Kawai, T, Matsuo
    Dalton Trans.52, 17375–17388 (2023).
    DOI: 10.1039/D3DT02814C

  16. Sandglass-typed single luminophore for water mapping measurements: Intra-molecular energy migration in hydrophilic Tb(III)/Sm(III) cluster
    Y. Hasegawa*, Y. Konishi, M. Enokido, S. Shoji, M. Wang, K. Fushimi, Y. Kitagawa
    Inorg. Chem.62, 16794–16800 (2023).
    DOI: 10.1021/acs.inorgchem.3c02219

  17. Investigation of the dissolution/passivation mechanisms on Fe-Cr alloys in acidic Na2SO4 solution using online ICP-OES
    A. Fujimura, S. Shoji, Y. Kitagawa, Y. Hasegawa, T. Doi, K. Fushimi*
    Electrochim. Acta463, 142843 (2023).
    DOI: 10.1016/j.electacta.2023.142843

  18. Thermally-assisted photosensitized emission in a trivalent terbium complex
    Y. Kitagawa* K. Shima, T. Nakai, M. Kumagai, S. Omagari, P. P. Ferreira da Rosa, S. Shoji, K. Fushimi, Y. Hasegawa*
    Commun. Chem.6, Article number: 122 (2023).
    DOI: 10.1038/s42004-023-00922-5

  19. Characteristic stacked structures and luminescent properties of dinuclear lanthanide complexes with pyrene units
    T. Nakai, K. Shima, S. Shoji, K. Fushimi, Y. Hasegawa*, Y. Kitagawa*
    Front. Chem.11, 1154012 (2023).
    DOI: 10.3389/fchem.2023.1154012

  20. Initiation of Sulfide Stress Cracking Using Potentiostatic Liquid-Phase Ion Gun
    K. Fushimi*, Y. Yanagimoto, S. Nakatsuji, S. Shoji, Y. Kitagawa, Y. Hasegawa, K. Baba
    J. Electrochem. Soc.170, 041508 (2023).
    DOI: 10.1149/1945-7111/accd26

  21. Synthesis of Bicyclo[1.1.1]pentane (BCP)-Based Straight-Shaped Diphosphine Ligands
    H. Takano, H. Katsuyama, H. Hayashi, M. Harukawa, M. Tsurui, S. Shoji, Y. Hasegawa, S. Maeda, T. Mita*
    Angew. Chem. Int. Ed.62, e202303435 (2023).
    DOI: 10.1002/anie.202303435

  22. Luminescent lanthanide complexes for effective oxygen-sensing and singlet oxygen generation
    Y. Kitagawa*, T. Nakai, S. Hosoya, S. Shoji, Y. Hasegawa*
    ChemPlusChem2023, e202200445 (2023).
    DOI: 10.1002/cplu.202200445

  23. Enhanced circularly polarized luminescence of chiral Eu(III) coordination polymers with structural strain
    M. Tsurui, Y. Kitagawa, S. Shoji, K. Fushimi, Y. Hasegawa*
    Dalton Trans.52, 796–805 (2023).
    DOI: 10.1039/D2DT03422K

  24. Plant growth acceleration using a transparent Eu3+-painted UV-to-red conversion film
    S. Shoji*, H. Saito*, Y. Jitsuyama, K. Tomita, Q. Haoyang, Y. Sakurai, Y. Okazaki, K. Aikawa, Y. Konishi, K. Sasaki, K. Fushimi, Y. Kitagawa, T. Suzuki*, Y. Hasegawa*
    Sci. Rep.12, Article number: 17155 (2022).
    DOI: 10.1038/s41598-022-21427-6

    日刊工業新聞「植物成長促すフィルム 紫外線→赤色光変換」(2022年10月27日).
    Yahoo!ニュース「野菜の重量4割増、植物の成長促す透明フィルムがスゴい」(2022年10月28日).
    読売新聞「植物の成長促すビニール」(2022年11月6日).
    科学新聞「フィルムに塗布して植物成長促進」(2022年11月18日).
    Chem-Station 第455回スポットライトリサーチ「赤色発光する希土類錯体で植物成長促進の実証に成功」(2022年12月30日). 

  25. Amorphous lanthanide complexes for organic luminescent materials
    J. Hayashi, S. Shoji, Y. Kitagawa, Y. Hasegawa*
    Coord. Chem. Rev.467, 214607 (2022).
    DOI: 10.1016/j.ccr.2022.214607

  26. Development of a quasi-on-time ICP-OES for analyzing electrode reaction products
    A. Fujimura, S. Shoji, Y. Kitagawa, Y. Hasegawa, T. Doi, K. Fushimi*
    Electrochim. Acta433, 141246 (2022).
    DOI: 10.1016/j.electacta.2022.141246

  27. Effective photosensitization in excited-state equilibrium: Brilliant luminescence of TbIII coordination polymers through ancillary ligand modifications
    Y. Kitagawa*, R. Moriake, T. Akama, K. Saito, K. Aikawa, S. Shoji, K. Fushimi, M. Kobayashi, T. Taketsugu, Y. Hasegawa*
    ChemPlusChem, 87, e202200151 (2022).
    DOI: 10.1002/cplu.202200151

  28. Self-assembly of a zinc bacteriochlorophyll-d analog with a lipophilic amide group in the 17-substituent
    S. Shoji*, V. Stepanenko, F. Würthner*, H. Tamiaki*
    Bull. Chem. Soc. Jpn.95, 1083–1085 (2022).
    DOI: 10.1246/bcsj.20220128


  29. Preparation of photonic molecular trains via soft-crystal polymerization of lanthanide complexes
    P. P. Ferreira da Rosa, Y. Kitagawa, S. Shoji, H. Oyama, K. Imaeda, N. Nakayama, K. Fushimi, H. Uesaka, K. Ueno, H. Goto, Y. Hasegawa*
    Nat. Commun.13, Article number: 3660 (2022).
    DOI: 10.1038/s41467-022-31164-z

  30. Asymmetric lumino-transformer: Circularly polarized luminescence of chiral Eu(III) coordination polymer with phase-transition behavior
    M. Tsurui, Y. Kitagawa, S. Shoji, H. Ohmagari, M. Hasegawa, M. Gon, K. Tanaka, M. Kobayashi, T. Taketsugu, K. Fushimi, Y. Hasegawa*
    J. Phys. Chem. B126, 3799–3807 (2022).
    DOI: 10.1021/acs.jpcb.2c01639

  31. Application of a new film for horticultural use to convert UV-light to photosynthetic active radiation
    S. Kitaoka, T. Shinano, T. Suzuki, S. Shoji, Y. Hasegawa
    Eurasian J. For. Res.22, 73–77 (2022).
    DOI: 10.14943/EJFR.22.73

  32. Tribo-excited chemical reaction using an EuIII complex with a stacked anthracene framework
    Y. Kitagawa*, A. Naito, K. Aikawa, K. Shima, S. Shoji, K. Fushimi, Y. Hasegawa*
    Chem. Eur. J.28, e202104401 (2022).
    DOI: 10.1002/chem.202104401

  33. Luminescent Eu(III)-based coordination polymers for photonic materials
    Y. Hasegawa*, S. Shoji, Y. Kitagawa
    Chem. Lett.51, 185–196 (2022).
    DOI: 10.1246/cl.210650

  34. Amide-bridged Eu(III) coordination polymer for stable luminescent glass material
    J. Hayashi, S. Shoji, K. Fushimi, Y. Kitagawa, Y. Hasegawa*
    Mater. Lett.297, 130012 (2021).
    DOI: 10.1016/j.matlet.2021.130012

  35. In-situ observation of corrosion initiation occurring on NaCl nanoparticles-deposited carbon steel surfaces
    K. Fushimi*, H. Okuyama, K. Ohshimizu, S. Shoji, Y. Kitagawa, Y. Hasegawa
    Tetsu-to-Hagane107(12), 1011–1019 (2021).
    DOI: 10.2355/tetsutohagane.TETSU-2021-049

  36. Zinc 7,8-dihydroxylated chlorophyll-a derivatives as a synthetic model of natural bacteriochlorophyll-a
    D. Funakoshi, Y. Nomura, S. Shoji, H. Tamiaki*
    Chem. Lett.49, 1403–1405 (2020).
    DOI: 10.1246/cl.200585

  37. An Europium (III) luminophore with pressure-sensing units: Effective back energy transfer in coordination polymers with hexadentate porous stable networks
    Y. Hasegawa*, T. Sawanobori, Y. Kitagawa, S. Shoji, K. Fushimi, Y. Nakasaka, T. Masuda, I. Hisaki
    ChemPlusChem85, 1989–1993 (2020).
    DOI: 10.1002/cplu.202000513

  38. Covalent heterodyads of synthetic chlorophyll derivatives linked with linear rigid substituents at the 20-positions constructing photoexcited energy transfer systems
    S. Shoji*, Y. Nomura, H. Tamiaki*
    Tetrahedron76, 131130 (2020).
    DOI: 10.1016/j.tet.2020.131130


  39. Synthetic substituted boronates of dihydroxy-bacteriochlorin absorbing and emitting far-red to near-infrared light as bacteriopheophytin-a analogs
    D. Funakoshi, Y. Nomura, S. Shoji, H. Tamiaki*
    Dyes Pigm.175, 108155 (2020).
    DOI: 10.1016/j.dyepig.2019.108155

  40. Bioinspired supramolecular nanosheets of zinc chlorophyll assemblies
    S. Shoji*, T. Ogawa, S. Matsubara, H. Tamiaki*
    Sci. Rep.9, Article number: 14006 (2019).
    DOI: 10.1038/s41598-019-50026-1

    日刊工業新聞「葉緑素 微小シート 光合成の仕組みなど解明へ」(2019年10月28日).
    朝日新聞デジタル「『人工光合成』実現へ葉緑素を利用」 (2019年10月31日).
    Chem-Station 第235回スポットライトリサーチ「葉緑素だけが集積したナノシート」(2019年12月9日).
    複合系光機能研究会 ニュースレター No.10 今回の複合光ギャラリー (2020年1月20日).

  41. Heterodimers of zinc and free-base chlorophyll derivatives co-assembled in biomimetic chlorosomal J-aggregates
    S. Shoji*, Y. Nomura, H. Tamiaki*
    Photochem. Photobiol. Sci.18, 555–562 (2019).
    DOI: 10.1016/j.dyepig.2018.08.026


  42. Supramolecular light-harvesting antenna system by co-aggregates of zinc (bacterio)chlorophyll-a derivatives with biomimetic chlorosomal self-assemblies
    S. Shoji*, H. Tamiaki*
    Dyes Pigm.160, 514–518 (2019).
    DOI: 10.1016/j.dyepig.2018.08.026


  43. Self-assemblies of zinc bacteriochlorophyll-d analogues having amide, ester, and urea groups as substituents at 17-position and observation of lamellar supramolecular nanostructures
    S. Shoji*, T. Ogawa, T. Hashishin, H. Tamiaki*
    ChemPhysChem19, 913–920 (2018). [Inside Cover]
    DOI: 10.1002/cphc.201701044


  44. Self-aggregation of synthetic chlorophyll-c derivative and effect of C17-acrylate residue on bridging green gap in chlorosomal model
    S. Matsubara, S. Shoji, H. Tamiaki*
    J. Photochem. Photobiol. A: Chem.340, 53–61 (2017).
    DOI: 10.1016/j.jphotochem.2017.02.021

  45. Nanotubes of biomimetic supramolecules constructed by synthetic metal chlorophyll derivatives
    S. Shoji*, T. Ogawa, T. Hashishin, S. Ogasawara, H. Watanabe, H. Usami, H. Tamiaki*
    Nano Lett.16, 3650–3654 (2016).
    DOI: 10.1021/acs.nanolett.6b00781


  46. In vitro self-assemblies of bacteriochlorophylls-c from Chlorobaculum tepidum and their supramolecular nanostructures
    S. Shoji, T. Mizoguchi, H. Tamiaki*
    J. Photochem. Photobiol. A: Chem.331, 190–196 (2016).
    DOI: 10.1016/j.jphotochem.2015.11.003


  47. Synthesis of zinc chlorophyll homo/hetero-dyads and their folded conformers with porphyrin, chlorin and bacteriochlorin π-systems
    H. Tamiaki*, K. Fukai, H. Shimazu, S. Shoji
    Photochem. Photobiol.90, 121–128 (2014).
    DOI: 10.1111/php.12173

  48. Pheophytinization kinetics of chlorophyll c under weakly acidic conditions: Effects of acrylic acid residue at the 17-position
    K. Sadaoka, S. Shoji, Y. Tsukatani, T. Yoshitomi, H. Tamiaki, S. Kashimura, Y. Saga*
    Bioorg. Med. Chem.21, 6915–6919 (2013).
    DOI: 10.1016/j.bmc.2013.09.032

  49. Reconstruction of rod self-aggregates of natural bacteriochlorophylls-c from Chloroflexus aurantiacus
    S. Shoji, T. Mizoguchi, H. Tamiaki*
    Chem. Phys. Lett.578, 102–105 (2013).
    DOI: 10.1016/j.cplett.2013.06.012


  50. Microflow-driven temporal self-assembly of amphiphilic molecules
    M. Numata*, M. Takayama, S. Shoji, H. Tamiaki
    Chem. Lett.41, 1689–1691 (2012).
    DOI: 10.1246/cl.2012.1689

  51. Ubiquity and quantitative significance of detoxification catabolism of chlorophyll associated with protistan herbivory
    Y. Kashiyama*, A. Yokoyama, Y. Kinoshita, S. Shoji, H. Miyashita, T. Shiratori, H. Suga, K. Ishikawa, A. Ishikawa, I. Inouye, K. Ishida, D. Fujinuma, K. Aoki, M. Kobayashi, S. Nomoto, T. Mizoguchi, H. Tamiaki*
    Proc. Natl. Acad. Sci., USA109, 17328–17335 (2012).
    DOI: 10.1073/pnas.1207347109

  52. Construction of chlorosomal rod self-aggregates in the solid state on any substrates from synthetic chlorophyll derivatives possessing an oligomethylene chain at the 17-propionate residue
    S. Shoji, T. Hashishin, H. Tamiaki*
    Chem. Eur. J.18, 13331–13341 (2012). [Back Cover]
    DOI: 10.1002/chem.201201935


  53. Self-assembly of zinc bacteriochlorophyll d derivative possessing a triethoxysilyl group at the 17-propionate residue
    N. Takahashi, S. Shoji, H. Tamiaki, Y. Saga*
    Bull. Chem. Soc. Jpn.85, 989–994 (2012).
    DOI: 10.1246/bcsj.20120043

  54. Photooxidative cleavage of zinc 20-substituted chlorophyll derivatives: conformationally P-helix–favored formation of regioselectively 19–20 opened linear tetrapyrroles
    H. Tamiaki*, Y. Okamoto, Y. Mikata, S. Shoji
    Photochem. Photobiol. Sci.11, 898–907 (2012).
    DOI: 10.1039/C1PP05301A


著書 / Books

  1. Lanthanide-Based Wavelength Conversion Materials
    Y. Hasegawa*, Y. Kitagawa, S. Shoji
    Springer Singapore (2024).

  2. 希土類錯体蛍光体の植物育成への応用
    庄司 淳, 長谷川靖哉, 北川裕一, 鈴木 卓, 斎藤秀之
    〈続〉次世代蛍光体材料の開発, シーエムシー出版, 111–118 (2024).

  3. MgN4
    民秋 均, 庄司 淳
    錯体化合物事典, 錯体化学会編, 朝倉書店, 450 (2019).

  4. ZnN4
    民秋 均, 庄司 淳
    錯体化合物事典, 錯体化学会編, 朝倉書店, 875 (2019).


その他 / Others

  1. ユウロピウム錯体塗布農業用フィルムの被覆による植物の成長促進
    鈴木 卓, 斎藤秀之, 庄司 淳, 長谷川靖哉
    バイオサイエンスとインダストリー(B&I)81(5), 412–413 (2023).

  2. 紫外線を赤色光に変換するフィルムによる植物の成長促進効果
    鈴木 卓, 斎藤秀之, 庄司 淳, 長谷川靖哉
    バイオサイエンスとインダストリー(B&I) 目で見るバイオ81(5), 390–391 (2023).

  3. 光合成アンテナ研究から農業へ
    庄司 淳
    カーボン・エネルギー社会協議会(CanApple)ニュースレター, 第191号 (2021).

  4. 生物から学ぶ効率的な光合成システム –分子レベルで設計された人工光捕集アンテナの構築–
    松原翔吾, 庄司 淳, 民秋 均
    化学, 76(5), 70–71 (2021).

  5. 希土類錯体分子の構造異性体を利用した光線力学診断と療法の両立
    庄司 淳
    ぶんせき, 日本分析化学会編, 9, 341 (2020).

  6. 緑色光合成細菌の光捕集アンテナを模倣したクロロフィル自己集積体のナノ構造観察
    庄司 淳, 小川哲也, 民秋 均
    NanotechJapan Bulletin, 13(1), 1–6 (2020).

  7. 天然/人工光合成アンテナの構造・機能と開発動向
    庄司 淳, 民秋 均
    MATERIAL STAGE, 技術情報協会, 16(11), 36–42 (2017).